Abstract
Visible light tomography is a promising and increasingly popular technique for fluid imaging. However, the use of a sparse number of viewpoints in the capturing setups makes the reconstruction of fluid flows very challenging. In this paper, we present a state-of-the-art 4D tomographic reconstruction framework that integrates several regularizers into a multi-scale matrix free optimization algorithm. In addition to existing regularizers, we propose two new regularizers for improved results: a regularizer based on view interpolation of projected images and a regularizer to encourage reprojection consistency. We demonstrate our method with extensive experiments on both simulated and real data.
Original language | English (US) |
---|---|
Title of host publication | Conference on Computer Vision and Pattern Recognition |
Publisher | IEEE |
State | Published - 2020 |