Top-illuminated dye-sensitized solar cells with a room-temperature- processed ZnO photoanode on metal substrates and a Pt-coated Ga-doped ZnO counter electrode

A. K.K. Kyaw, X. W. Sun, J. L. Zhao, J. X. Wang, D. W. Zhao, X. F. Wei, X. W. Liu, H. V. Demir, T. Wu

Research output: Contribution to journalArticlepeer-review

35 Scopus citations

Abstract

We report on top-illuminated, fluorine tin oxide/indium tin oxide-free (FTO/ITO-free), dye-sensitized solar cells (DSCs) using room-temperature- processed ZnO layers on metal substrates as the working electrodes and Pt-coated Ga-doped ZnO layers (GZO) as the counter electrodes. These top-illuminated DSCs with GZO render comparable efficiency to those employing commercial FTO counter electrodes. Despite a lower current density, the top-illuminated DSCs result in a higher fill factor than conventional DSCs due to a low ohmic loss at the electrode/semiconductor interface. The effect of metal substrate on the performance of the resulting top-illuminated DSCs is also studied by employing various metals with different work functions. Ti is shown to be a suitable metal to be used as the working electrode in the top-illuminated device architecture owing to its low ohmic loss at the electrode/semiconductor interface, minimum catalytic activity on redox reactions and high resistance to corrosion by liquid electrolytes.

Original languageEnglish (US)
Article number045102
JournalJournal of Physics D: Applied Physics
Volume44
Issue number4
DOIs
StatePublished - Feb 2 2011
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Acoustics and Ultrasonics
  • Surfaces, Coatings and Films

Fingerprint

Dive into the research topics of 'Top-illuminated dye-sensitized solar cells with a room-temperature- processed ZnO photoanode on metal substrates and a Pt-coated Ga-doped ZnO counter electrode'. Together they form a unique fingerprint.

Cite this