TY - JOUR
T1 - Totally optimal decision trees for Boolean functions
AU - Chikalov, Igor
AU - Hussain, Shahid
AU - Moshkov, Mikhail
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: Research reported in this publication was supported by the King Abdullah University of Science and Technology (KAUST). Authors acknowledge valuable comments and suggestions by anonymous reviewers that clearly improved the readability of this work and helped prove the two hypotheses.
PY - 2016/7/28
Y1 - 2016/7/28
N2 - We study decision trees which are totally optimal relative to different sets of complexity parameters for Boolean functions. A totally optimal tree is an optimal tree relative to each parameter from the set simultaneously. We consider the parameters characterizing both time (in the worst- and average-case) and space complexity of decision trees, i.e., depth, total path length (average depth), and number of nodes. We have created tools based on extensions of dynamic programming to study totally optimal trees. These tools are applicable to both exact and approximate decision trees, and allow us to make multi-stage optimization of decision trees relative to different parameters and to count the number of optimal trees. Based on the experimental results we have formulated the following hypotheses (and subsequently proved): for almost all Boolean functions there exist totally optimal decision trees (i) relative to the depth and number of nodes, and (ii) relative to the depth and average depth.
AB - We study decision trees which are totally optimal relative to different sets of complexity parameters for Boolean functions. A totally optimal tree is an optimal tree relative to each parameter from the set simultaneously. We consider the parameters characterizing both time (in the worst- and average-case) and space complexity of decision trees, i.e., depth, total path length (average depth), and number of nodes. We have created tools based on extensions of dynamic programming to study totally optimal trees. These tools are applicable to both exact and approximate decision trees, and allow us to make multi-stage optimization of decision trees relative to different parameters and to count the number of optimal trees. Based on the experimental results we have formulated the following hypotheses (and subsequently proved): for almost all Boolean functions there exist totally optimal decision trees (i) relative to the depth and number of nodes, and (ii) relative to the depth and average depth.
UR - http://hdl.handle.net/10754/622264
UR - https://linkinghub.elsevier.com/retrieve/pii/S0166218X16303195
UR - http://www.scopus.com/inward/record.url?scp=84991035917&partnerID=8YFLogxK
U2 - 10.1016/j.dam.2016.07.009
DO - 10.1016/j.dam.2016.07.009
M3 - Article
SN - 0166-218X
VL - 215
SP - 1
EP - 13
JO - Discrete Applied Mathematics
JF - Discrete Applied Mathematics
ER -