TY - GEN
T1 - Tracking deforming objects by filtering and prediction in the space of curves
AU - Sundaramoorthi, Ganesh
AU - Mennucci, Andrea
AU - Soatto, Stefano
AU - Yezzi, Anthony
PY - 2009
Y1 - 2009
N2 - We propose a dynamical model-based approach for tracking the shape and deformation of highly deforming objects from time-varying imagery. Previous works have assumed that the object deformation is smooth, which is realistic for the tracking problem, but most have restricted the deformation to belong to a finite-dimensional group, such as affine motions, or to finitely-parameterized models. This, however, limits the accuracy of the tracking scheme. We exploit the smoothness assumption implicit in previous work, but we lift the restriction to finite-dimensional motions/deformations. To do so, we derive analytical tools to define a dynamical model on the (infinitedimensional) space of curves. To demonstrate the application of these ideas to object tracking, we construct a simple dynamical model on shapes, which is a first-order approximation to any dynamical system. We then derive an associated nonlinear filter that estimates and predicts the shape and deformation of a object from image measurements.
AB - We propose a dynamical model-based approach for tracking the shape and deformation of highly deforming objects from time-varying imagery. Previous works have assumed that the object deformation is smooth, which is realistic for the tracking problem, but most have restricted the deformation to belong to a finite-dimensional group, such as affine motions, or to finitely-parameterized models. This, however, limits the accuracy of the tracking scheme. We exploit the smoothness assumption implicit in previous work, but we lift the restriction to finite-dimensional motions/deformations. To do so, we derive analytical tools to define a dynamical model on the (infinitedimensional) space of curves. To demonstrate the application of these ideas to object tracking, we construct a simple dynamical model on shapes, which is a first-order approximation to any dynamical system. We then derive an associated nonlinear filter that estimates and predicts the shape and deformation of a object from image measurements.
UR - http://www.scopus.com/inward/record.url?scp=77950834969&partnerID=8YFLogxK
U2 - 10.1109/CDC.2009.5400786
DO - 10.1109/CDC.2009.5400786
M3 - Conference contribution
AN - SCOPUS:77950834969
SN - 9781424438716
T3 - Proceedings of the IEEE Conference on Decision and Control
SP - 2395
EP - 2401
BT - Proceedings of the 48th IEEE Conference on Decision and Control held jointly with 2009 28th Chinese Control Conference, CDC/CCC 2009
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 48th IEEE Conference on Decision and Control held jointly with 2009 28th Chinese Control Conference, CDC/CCC 2009
Y2 - 15 December 2009 through 18 December 2009
ER -