Training a neural-network-based surrogate model for aerodynamic optimization using a gaussian process

Nahla Alhazmi, Yousef Ghazi, Mohammed Aldosari, Radek Tezaur, Charbel Farhat

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

A new idea is presented for efficiently training a low-dimensional, neural network (NN)-based surrogate of a high-fidelity, high-dimensional computational model (HDM). It consists in training the NN by adaptively sampling the parameter space of interest using the acquisition function of a Gaussian Process and exercising the HDM at the sampled parameter points. This approach, which can be described as an active learning approach, is explained and illustrated with numerical experiments associated with the prediction of the lift-over-drag ratio of a cambered NACA airfoil in a large, five-dimensional parameter space of flight conditions and shape design variables. The obtained numerical results demonstrate the superior efficiency as well as accuracy delivered by the proposed training over standard alternatives based on uniform and random parameter samplings. The surrogate models constructed and trained using the proposed approach are suitable for time-critical applications such as design optimization and uncertainty quantification.

Original languageEnglish (US)
Title of host publicationAIAA Scitech 2021 Forum
PublisherAmerican Institute of Aeronautics and Astronautics Inc. (AIAA)
Pages1-9
Number of pages9
ISBN (Print)9781624106095
StatePublished - 2021
EventAIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2021 - Virtual, Online
Duration: Jan 11 2021Jan 15 2021

Publication series

NameAIAA Scitech 2021 Forum

Conference

ConferenceAIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2021
CityVirtual, Online
Period01/11/2101/15/21

ASJC Scopus subject areas

  • Aerospace Engineering

Fingerprint

Dive into the research topics of 'Training a neural-network-based surrogate model for aerodynamic optimization using a gaussian process'. Together they form a unique fingerprint.

Cite this