TY - JOUR
T1 - Trajectory clustering and an application to airspace monitoring
AU - Gariel, Maxime
AU - Srivastava, Ashok N.
AU - Feron, Eric
N1 - Generated from Scopus record by KAUST IRTS on 2021-02-18
PY - 2011/12/1
Y1 - 2011/12/1
N2 - This paper presents a framework aimed at monitoring the behavior of aircraft in a given airspace. Trajectories that constitute typical operations are determined and learned using data-driven methods. Standard procedures are used by air traffic controllers (ATCs) to guide aircraft, ensure the safety of the airspace, and maximize runway occupancy. Even though standard procedures are used by ATCs, control of the aircraft remains with the pilots, leading to large variability in the flight patterns observed. Two methods for identifying typical operations and their variability from recorded radar tracks are presented. This knowledge base is then used to monitor the conformance of current operations against operations previously identified as typical. A tool called AirTrajectoryMiner is presented, aiming at monitoring the instantaneous health of the airspace, in real time. The airspace is healthy when all aircraft are flying according to typical operations. A measure of complexity is introduced, measuring the conformance of current flight to typical flight patterns. When an aircraft does not conform, the complexity increases as more attention from ATC is required to ensure safe separation between aircraft. © 2011 IEEE.
AB - This paper presents a framework aimed at monitoring the behavior of aircraft in a given airspace. Trajectories that constitute typical operations are determined and learned using data-driven methods. Standard procedures are used by air traffic controllers (ATCs) to guide aircraft, ensure the safety of the airspace, and maximize runway occupancy. Even though standard procedures are used by ATCs, control of the aircraft remains with the pilots, leading to large variability in the flight patterns observed. Two methods for identifying typical operations and their variability from recorded radar tracks are presented. This knowledge base is then used to monitor the conformance of current operations against operations previously identified as typical. A tool called AirTrajectoryMiner is presented, aiming at monitoring the instantaneous health of the airspace, in real time. The airspace is healthy when all aircraft are flying according to typical operations. A measure of complexity is introduced, measuring the conformance of current flight to typical flight patterns. When an aircraft does not conform, the complexity increases as more attention from ATC is required to ensure safe separation between aircraft. © 2011 IEEE.
UR - http://ieeexplore.ieee.org/document/5959983/
UR - http://www.scopus.com/inward/record.url?scp=82455210974&partnerID=8YFLogxK
U2 - 10.1109/TITS.2011.2160628
DO - 10.1109/TITS.2011.2160628
M3 - Article
SN - 1524-9050
VL - 12
SP - 1511
EP - 1524
JO - IEEE Transactions on Intelligent Transportation Systems
JF - IEEE Transactions on Intelligent Transportation Systems
IS - 4
ER -