TY - JOUR
T1 - Transdermal and lateral effective diffusivities for drug transport in stratum corneum from a microscopic anisotropic diffusion model.
AU - Wang, Junxi
AU - Nitsche, Johannes M
AU - Kasting, Gerald B
AU - Wittum, Gabriel
AU - Nägel, Arne
N1 - KAUST Repository Item: Exported on 2023-02-14
Acknowledgements: JMN expresses his sincere gratitude to the Goethe Center for Scientific Computing, Goethe University, Frankfurt for hospitality during a sabbatical stay during which this research was carried out.
PY - 2023/2/9
Y1 - 2023/2/9
N2 - This paper presents a computational model of molecular diffusion through the interfollicular stratum corneum. Specifically, it extends an earlier two-dimensional microscopic model for the permeability in two ways: (1) a microporous leakage pathway through the intercellular lipid lamellae allows slow permeation of highly hydrophilic permeants through the tissue; and (2) the model yields explicit predictions of both lateral (Dsc‖ ) and transdermal (Dsc⊥ ) effective (average, homogenized) diffusivities of solutes within the tissue. We present here the mathematical framework for the analysis and a comparison of the predictions with experimental data on desorption of both hydrophilic and lipophilic solutes from human stratum corneum in vitro. Diffusion in the lipid lamellae is found to make the effective diffusivity highly anisotropic, with the predicted ratio Dsc‖ /Dsc⊥ ranging from 34-39 for fully hydrated skin and 150 to more than 1000 for partially hydrated skin. The diffusivities and their ratio are in accord with both experimental data and the results of mathematical analyses performed by others.
AB - This paper presents a computational model of molecular diffusion through the interfollicular stratum corneum. Specifically, it extends an earlier two-dimensional microscopic model for the permeability in two ways: (1) a microporous leakage pathway through the intercellular lipid lamellae allows slow permeation of highly hydrophilic permeants through the tissue; and (2) the model yields explicit predictions of both lateral (Dsc‖ ) and transdermal (Dsc⊥ ) effective (average, homogenized) diffusivities of solutes within the tissue. We present here the mathematical framework for the analysis and a comparison of the predictions with experimental data on desorption of both hydrophilic and lipophilic solutes from human stratum corneum in vitro. Diffusion in the lipid lamellae is found to make the effective diffusivity highly anisotropic, with the predicted ratio Dsc‖ /Dsc⊥ ranging from 34-39 for fully hydrated skin and 150 to more than 1000 for partially hydrated skin. The diffusivities and their ratio are in accord with both experimental data and the results of mathematical analyses performed by others.
UR - http://hdl.handle.net/10754/687715
UR - https://linkinghub.elsevier.com/retrieve/pii/S0939641123000322
U2 - 10.1016/j.ejpb.2023.01.025
DO - 10.1016/j.ejpb.2023.01.025
M3 - Article
C2 - 36764498
SN - 0939-6411
JO - European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V
JF - European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V
ER -