Translational repression of the cpw-wpc gene family in the malaria parasite Plasmodium

Pavitra N. Rao, Jorge M. Santos, Arnab Pain, Thomas J. Templeton, Gunnar R. Mair

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

The technical challenges of working with the sexual stages of the malaria parasite Plasmodium have hindered the characterization of sexual stage antigens in the quest for a successful malaria transmission-blocking vaccine. One such predicted and largely uncharacterized group of sexual stage candidate antigens is the CPW-WPC family of proteins. CPW-WPC proteins are named for a characteristic domain that contains two conserved motifs, CPxxW and WPC. Conserved across Apicomplexa, this family is also present earlier in the Alveolata in the free-living, non-parasitophorous, photosynthetic chromerids, Chromera and Vitrella. In P. falciparum and P. berghei blood stage parasites the transcripts of all nine cpw-wpc genes have been detected in gametocytes. RNA immunoprecipitation followed by reverse transcriptase-PCR reveals all P. berghei cpw-wpc transcripts to be bound by the translational repressors DOZI and CITH, and thus are likely under translational control prior to transmission from the rodent host to the mosquito vector in P. berghei. The GFP tagging of two endogenous P. berghei genes confirmed translational silencing in the gametocyte and translation in ookinetes. Establishing a luciferase transgene assay we show that the 3′ untranslated region of PF3D7_1331400 controls protein expression of this reporter in P. falciparum gametocytes. Our analyses suggest that cpw-wpc genes are translationally silenced in gametocytes across Plasmodium spp. and activated during ookinete formation and thus may have a role in transmission to the mosquito.
Original languageEnglish (US)
Pages (from-to)463-471
Number of pages9
JournalParasitology International
Volume65
Issue number5
DOIs
StatePublished - Jun 19 2016

ASJC Scopus subject areas

  • Infectious Diseases
  • Parasitology

Fingerprint

Dive into the research topics of 'Translational repression of the cpw-wpc gene family in the malaria parasite Plasmodium'. Together they form a unique fingerprint.

Cite this