TY - JOUR
T1 - Treating sub-valence correlation effects in domain based pair natural orbital coupled cluster calculations: an out-of-the-box approach
AU - Bistoni, Giovanni
AU - Riplinger, Christoph
AU - Minenkov, Yury
AU - Cavallo, Luigi
AU - Auer, Alexander A.
AU - Neese, Frank
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: Giovanni Bistoni, Alexander A. Auer and Frank Neese gratefully acknowledge the Priority Program ’’Control of London Dispersion Interactions in Molecular Chemistry’’ (SPP 1807) of the DFG for financial support. Yury Minenkov and Luigi Cavallo gratefully acknowledge the financial support from King Abdullah University of Science and Technology (KAUST).
PY - 2017/6/27
Y1 - 2017/6/27
N2 - The validity of the main approximations used in canonical and domain based pair natural orbital coupled cluster methods (CCSD(T) and DLPNO-CCSD(T), respectively) in standard chemical applications is discussed. In particular, we investigate the dependence of the results on the number of electrons included in the correlation treatment in frozen-core (FC) calculations and on the main threshold governing the accuracy of DLPNO all-electron (AE) calculations. Initially, scalar relativistic orbital energies for the ground state of the atoms from Li to Rn in the periodic table are calculated. An energy criterion is applied for determining the orbitals that can be excluded from the correlation treatment in FC coupled cluster calculations without significant loss of accuracy. The heterolytic dissociation energy (HDE) of a series of metal compounds (LiF, NaF, AlF3, CaF2, CuF, GaF3, YF3, AgF, InF3, HfF4 and AuF) is calculated at the canonical CCSD(T) level, and the dependence of the results on the number of correlated electrons is investigated. Although for many of the studied reactions sub-valence correlation effects contribute significantly to the HDE, the use of an energy criterion permits a conservative definition of the size of the core, allowing FC calculations to be performed in a black-box fashion while retaining chemical accuracy. A comparison of the CCSD and the DLPNO-CCSD methods in describing the core-core, core-valence and valence-valence components of the correlation energy is given. It is found that more conservative thresholds must be used for electron pairs containing at least one core electron in order to achieve high accuracy in AE DLPNO-CCSD calculations relative to FC calculations. With the new settings, the DLPNO-CCSD method reproduces canonical CCSD results in both AE and FC calculations with the same accuracy.
AB - The validity of the main approximations used in canonical and domain based pair natural orbital coupled cluster methods (CCSD(T) and DLPNO-CCSD(T), respectively) in standard chemical applications is discussed. In particular, we investigate the dependence of the results on the number of electrons included in the correlation treatment in frozen-core (FC) calculations and on the main threshold governing the accuracy of DLPNO all-electron (AE) calculations. Initially, scalar relativistic orbital energies for the ground state of the atoms from Li to Rn in the periodic table are calculated. An energy criterion is applied for determining the orbitals that can be excluded from the correlation treatment in FC coupled cluster calculations without significant loss of accuracy. The heterolytic dissociation energy (HDE) of a series of metal compounds (LiF, NaF, AlF3, CaF2, CuF, GaF3, YF3, AgF, InF3, HfF4 and AuF) is calculated at the canonical CCSD(T) level, and the dependence of the results on the number of correlated electrons is investigated. Although for many of the studied reactions sub-valence correlation effects contribute significantly to the HDE, the use of an energy criterion permits a conservative definition of the size of the core, allowing FC calculations to be performed in a black-box fashion while retaining chemical accuracy. A comparison of the CCSD and the DLPNO-CCSD methods in describing the core-core, core-valence and valence-valence components of the correlation energy is given. It is found that more conservative thresholds must be used for electron pairs containing at least one core electron in order to achieve high accuracy in AE DLPNO-CCSD calculations relative to FC calculations. With the new settings, the DLPNO-CCSD method reproduces canonical CCSD results in both AE and FC calculations with the same accuracy.
UR - http://hdl.handle.net/10754/625068
UR - http://pubs.acs.org/doi/abs/10.1021/acs.jctc.7b00352
UR - http://www.scopus.com/inward/record.url?scp=85023200874&partnerID=8YFLogxK
U2 - 10.1021/acs.jctc.7b00352
DO - 10.1021/acs.jctc.7b00352
M3 - Article
C2 - 28605579
SN - 1549-9618
VL - 13
SP - 3220
EP - 3227
JO - Journal of Chemical Theory and Computation
JF - Journal of Chemical Theory and Computation
IS - 7
ER -