Abstract
Chabazite zeolites with trimodal porosity (native micropores of the CHA framework, an additional network of larger micropores of ∼0.5 nm, and mesopores) were synthesized by adding diquarternary ammonium-type surfactant C22-4-4 cations and fluoride anions in the synthesis of SSZ-13 zeolite. The hierarchical SSZ-13 zeolites are fully crystalline and exhibit similar acidity as bulk SSZ-13 zeolite. The increased diffusion rate in the hierarchical SSZ-13, proven by uptake experiments of bulky molecules and selective staining by thiophene oligomers, resulted in much slower catalyst deactivation in the methanol-to-olefins (MTO) reaction. Confocal fluorescent images of spent hierarchical SSZ-13 zeolites reveal homogeneous distribution of carbonaceous deposits, indicating that the micropore space has been completely utilized during the MTO reaction. (Graph Presented).
Original language | English (US) |
---|---|
Journal | ACS Catalysis |
Volume | 6 |
Issue number | 4 |
DOIs | |
State | Published - Apr 1 2016 |
Externally published | Yes |