Abstract
We propose a new class of trans-Gaussian random fields named Tukey g-and-h (TGH) random fields to model non-Gaussian spatial data. The proposed TGH random fields have extremely flexible marginal distributions, possibly skewed and/or heavy-tailed, and, therefore, have a wide range of applications. The special formulation of the TGH random field enables an automatic search for the most suitable transformation for the dataset of interest while estimating model parameters. Asymptotic properties of the maximum likelihood estimator and the probabilistic properties of the TGH random fields are investigated. An efficient estimation procedure, based on maximum approximated likelihood, is proposed and an extreme spatial outlier detection algorithm is formulated. Kriging and probabilistic prediction with TGH random fields are developed along with prediction confidence intervals. The predictive performance of TGH random fields is demonstrated through extensive simulation studies and an application to a dataset of total precipitation in the south east of the United States.
Original language | English (US) |
---|---|
Pages (from-to) | 1236-1249 |
Number of pages | 14 |
Journal | Journal of the American Statistical Association |
Volume | 112 |
Issue number | 519 |
DOIs | |
State | Published - Jul 15 2016 |
Fingerprint
Dive into the research topics of 'Tukey g-and-h Random Fields'. Together they form a unique fingerprint.Datasets
-
Supplementary Material for: Tukey $\textit{g}$-and-$\textit{h}$ Random Fields
Xu, G. (Creator), Genton, M. G. (Creator) & Xu, G. (Creator), figshare, 2016
DOI: 10.6084/m9.figshare.3487658, http://hdl.handle.net/10754/624776
Dataset