Tunable acetylene sorption by flexible catenated metal–organic frameworks

Mickaele Bonneau, Christophe Lavenn, Jia Jia Zheng, Alexandre Legrand, Tomofumi Ogawa, Kunihisa Sugimoto, Francois Xavier Coudert, Regis Reau, Shigeyoshi Sakaki, Ken ichi Otake, Susumu Kitagawa*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

76 Scopus citations

Abstract

The safe storage of flammable gases, such as acetylene, is essential for current industrial purposes. However, the narrow pressure (P) and temperature range required for the industrial use of pure acetylene (100 < P < 200 kPa at 298 K) and its explosive behaviour at higher pressures make its storage and release challenging. Flexible metal–organic frameworks that exhibit a gated adsorption/desorption behaviour—in which guest uptake and release occur above threshold pressures, usually accompanied by framework deformations—have shown promise as storage adsorbents. Herein, the pressures for gas uptake and release of a series of zinc-based mixed-ligand catenated metal–organic frameworks were controlled by decorating its ligands with two different functional groups and changing their ratio. This affects the deformation energy of the framework, which in turn controls the gated behaviour. The materials offer good performances for acetylene storage with a usable capacity of ~90 v/v (77% of the overall amount) at 298 K and under a practical pressure range (100–150 kPa). [Figure not available: see fulltext.].

Original languageEnglish (US)
Pages (from-to)816-822
Number of pages7
JournalNature Chemistry
Volume14
Issue number7
DOIs
StatePublished - Jul 2022

ASJC Scopus subject areas

  • General Chemistry
  • General Chemical Engineering

Fingerprint

Dive into the research topics of 'Tunable acetylene sorption by flexible catenated metal–organic frameworks'. Together they form a unique fingerprint.

Cite this