Two-dimensional gersiloxenes with tunable bandgap for photocatalytic H2evolution and CO2photoreduction to CO

Fulai Zhao, Yiyu Feng, Yu Wang, Xin Zhang, Xuejing Liang, Zhen Li, Fei Zhang, Tuo Wang, Jinlong Gong, Wei Feng

Research output: Contribution to journalArticlepeer-review

106 Scopus citations

Abstract

The discovery of graphene and graphene-like two-dimensional materials has brought fresh vitality to the field of photocatalysis. Bandgap engineering has always been an effective way to make semiconductors more suitable for specific applications such as photocatalysis and optoelectronics. Achieving control over the bandgap helps to improve the light absorption capacity of the semiconductor materials, thereby improving the photocatalytic performance. This work reports two-dimensional −H/−OH terminal-substituted siligenes (gersiloxenes) with tunable bandgap. All gersiloxenes are direct-gap semiconductors and have wide range of light absorption and suitable band positions for light driven water reduction into H2, and CO2reduction to CO under mild conditions. The gersiloxene with the best performance can provide a maximum CO production of 6.91 mmol g−1h−1, and a high apparent quantum efficiency (AQE) of 5.95% at 420 nm. This work may open up new insights into the discovery, research and application of new two-dimensional materials in photocatalysis.
Original languageEnglish (US)
JournalNature Communications
Volume11
Issue number1
DOIs
StatePublished - Dec 1 2020
Externally publishedYes

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Chemistry
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Two-dimensional gersiloxenes with tunable bandgap for photocatalytic H2evolution and CO2photoreduction to CO'. Together they form a unique fingerprint.

Cite this