@inproceedings{94f7d5fdc26b49258ddf368e7dcf2a96,
title = "Two-photon lensless endoscopes with multicore fibers",
abstract = "The lensless endoscope represents the ultimate limit in miniaturization of imaging tools: an image can be transmitted by numerical or physical inversion of the mode scrambling process through a bare optical fiber. Lensless endoscopes featuring multicore fibers and spatial light modulators are well adapted for nonlinear imaging as they minimally distort ultrashort pulses in the time domain as opposed to multimode fibers [1]. And in earlier works, we had addressed the issues of imaging artifacts and bending sensitivity with an helically twisted multicore fiber with a sparse and aperiodic core layout in the transverse plane [2]. However sufficiently irradiating the sample plane remained a major challenge - particularly for the imaging of dim and challenging samples such as neurons in scattering media.",
author = "{El Moussawi}, Fatima and Matthias Hofer and Siddharth Sivankutty and Andrea Bertoncini and Damien Labat and Andy Cassez and Geraud Bouwmans and Rosa Cossart and Olivier Vanvincq and Carlo Liberale and Herve Rigneault and Andresen, {Esben Ravn}",
note = "Publisher Copyright: {\textcopyright} 2023 IEEE.; 2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2023 ; Conference date: 26-06-2023 Through 30-06-2023",
year = "2023",
doi = "10.1109/CLEO/EUROPE-EQEC57999.2023.10231882",
language = "English (US)",
series = "2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2023",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
booktitle = "2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2023",
address = "United States",
}