TY - JOUR
T1 - Unambiguous scattering matrix for non-Hermitian systems
AU - Novitsky, Andrey
AU - Lyakhov, Dmitry
AU - Michels, Dominik L.
AU - Pavlov, Alexander A.
AU - Shalin, Alexander S.
AU - Novitsky, Denis V.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The work was supported by the Belarusian Republican Foundation for Fundamental Research (Project No. F18R021) and the Russian Foundation for Basic Research (Projects No. 18-02-00414, No. 18-52-00005, and No. 18-32-00160). Numerical simulations of light interaction with resonant media were supported by the Russian Science Foundation (Project No. 18-72-10127). D.L. and D.M. were supported by KAUST under individual baseline funding.
PY - 2020/4/23
Y1 - 2020/4/23
N2 - PT symmetry is a unique platform for light manipulation and versatile use in unidirectional invisibility, lasing, sensing, etc. Broken and unbroken PT-symmetric states in non-Hermitian open systems are described by scattering matrices. A multilayer structure, as a simplest example of the open system, has no certain definition of the scattering matrix, since the output ports can be permuted. The uncertainty in definition of the exceptional points bordering PT-symmetric and PT-symmetry-broken states poses an important problem, because the exceptional points are indispensable in applications such as sensing and mode discrimination. Here we derive the proper scattering matrix from the unambiguous relation between the PT-symmetric Hamiltonian and scattering matrix. We reveal that the exceptional points of the scattering matrix with permuted output ports are not related to the PT symmetry breaking. Nevertheless, they can be employed for finding a lasing onset as demonstrated in our time-domain calculations and scattering-matrix pole analysis. Our results are important for various applications of the non-Hermitian systems including encircling exceptional points, coherent perfect absorption, PT-symmetric plasmonics, etc.
AB - PT symmetry is a unique platform for light manipulation and versatile use in unidirectional invisibility, lasing, sensing, etc. Broken and unbroken PT-symmetric states in non-Hermitian open systems are described by scattering matrices. A multilayer structure, as a simplest example of the open system, has no certain definition of the scattering matrix, since the output ports can be permuted. The uncertainty in definition of the exceptional points bordering PT-symmetric and PT-symmetry-broken states poses an important problem, because the exceptional points are indispensable in applications such as sensing and mode discrimination. Here we derive the proper scattering matrix from the unambiguous relation between the PT-symmetric Hamiltonian and scattering matrix. We reveal that the exceptional points of the scattering matrix with permuted output ports are not related to the PT symmetry breaking. Nevertheless, they can be employed for finding a lasing onset as demonstrated in our time-domain calculations and scattering-matrix pole analysis. Our results are important for various applications of the non-Hermitian systems including encircling exceptional points, coherent perfect absorption, PT-symmetric plasmonics, etc.
UR - http://hdl.handle.net/10754/662922
UR - https://link.aps.org/doi/10.1103/PhysRevA.101.043834
UR - http://www.scopus.com/inward/record.url?scp=85084662226&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.101.043834
DO - 10.1103/PhysRevA.101.043834
M3 - Article
SN - 2469-9934
VL - 101
JO - Physical Review A
JF - Physical Review A
IS - 4
ER -