Abstract
In this article we consider a Monte-Carlo-based method to filter partially observed diffusions observed at regular and discrete times. Given access only to Euler discretizations of the diffusion process, we present a new procedure which can return online estimates of the filtering distribution with no time-discretization bias and finite variance. Our approach is based upon a novel double application of the randomization methods of Rhee and Glynn (Operat. Res.63, 2015) along with the multilevel particle filter (MLPF) approach of Jasra et al. (SIAM J. Numer. Anal.55, 2017). A numerical comparison of our new approach with the MLPF, on a single processor, shows that similar errors are possible for a mild increase in computational cost. However, the new method scales strongly to arbitrarily many processors.
Original language | English (US) |
---|---|
Pages (from-to) | 1-27 |
Number of pages | 27 |
Journal | Advances in Applied Probability |
DOIs | |
State | Published - Jun 15 2022 |
ASJC Scopus subject areas
- Applied Mathematics
- Statistics and Probability