Abstract
We develop a Bayesian inference method for diffusions observed discretely and with noise, which is free of discretization bias. Unlike existing unbiased inference methods, our method does not rely on exact simulation techniques. Instead, our method uses standard time-discretized approximations of diffusions, such as the Euler--Maruyama scheme. Our approach is based on particle marginal
Metropolis--Hastings, a particle filter, randomized multilevel Monte Carlo, and an importance sampling type correction of approximate Markov chain Monte Carlo. The resulting estimator leads to inference without a bias from the time-discretization as the number of Markov chain iterations increases. We give convergence results and recommend allocations for algorithm inputs. Our method
admits a straightforward parallelization and can be computationally efficient. The user-friendly approach is illustrated on three examples, where the underlying diffusion is an Ornstein--Uhlenbeck process, a geometric Brownian motion, and a 2d nonreversible Langevin equation.
Original language | English (US) |
---|---|
Pages (from-to) | 763-787 |
Number of pages | 25 |
Journal | SIAM/ASA Journal on Uncertainty Quantification |
Volume | 9 |
Issue number | 2 |
DOIs | |
State | Published - Jun 8 2021 |