TY - JOUR
T1 - Unconditionally stable methods for simulating multi-component two-phase interface models with Peng-Robinson equation of state and various boundary conditions
AU - Kou, Jisheng
AU - Sun, Shuyu
N1 - KAUST Repository Item: Exported on 2020-10-01
PY - 2015/3/12
Y1 - 2015/3/12
N2 - In this paper, we consider multi-component dynamic two-phase interface models, which are formulated by the Cahn-Hilliard system with Peng-Robinson equation of state and various boundary conditions. These models can be derived from the minimum problems of Helmholtz free energy or grand potential in the realistic thermodynamic systems. The resulted Cahn-Hilliard systems with various boundary conditions are fully coupled and strongly nonlinear. A linear transformation is introduced to decouple the relations between different components, and as a result, the models are simplified. From this, we further propose a semi-implicit unconditionally stable time discretization scheme, which allows us to solve the Cahn-Hilliard system by a decoupled way, and thus, our method can significantly reduce the computational cost and memory requirements. The mixed finite element methods are employed for the spatial discretization, and the approximate errors are also analyzed for both space and time. Numerical examples are tested to demonstrate the efficiency of our proposed methods. © 2015 Elsevier B.V.
AB - In this paper, we consider multi-component dynamic two-phase interface models, which are formulated by the Cahn-Hilliard system with Peng-Robinson equation of state and various boundary conditions. These models can be derived from the minimum problems of Helmholtz free energy or grand potential in the realistic thermodynamic systems. The resulted Cahn-Hilliard systems with various boundary conditions are fully coupled and strongly nonlinear. A linear transformation is introduced to decouple the relations between different components, and as a result, the models are simplified. From this, we further propose a semi-implicit unconditionally stable time discretization scheme, which allows us to solve the Cahn-Hilliard system by a decoupled way, and thus, our method can significantly reduce the computational cost and memory requirements. The mixed finite element methods are employed for the spatial discretization, and the approximate errors are also analyzed for both space and time. Numerical examples are tested to demonstrate the efficiency of our proposed methods. © 2015 Elsevier B.V.
UR - http://hdl.handle.net/10754/566186
UR - https://linkinghub.elsevier.com/retrieve/pii/S0377042715001077
UR - http://www.scopus.com/inward/record.url?scp=84939253043&partnerID=8YFLogxK
U2 - 10.1016/j.cam.2015.02.037
DO - 10.1016/j.cam.2015.02.037
M3 - Article
SN - 0377-0427
VL - 291
SP - 158
EP - 182
JO - Journal of Computational and Applied Mathematics
JF - Journal of Computational and Applied Mathematics
ER -