Understanding catalyst deactivation during the direct cracking of crude oil

Mohammed A. Alabdullah, Tuiana Shoinkhorova, Alla Dikhtiarenko, Samy Ould-Chikh, Alberto Rodriguez-Gomez, Sang Ho Chung, Arwa O. Alahmadi, Idoia Hita, Sébastien Pairis, Jean Louis Hazemann, Pedro Castaño, Javier Ruiz-Martinez, Isidoro Morales Osorio, Khalid Almajnouni, Wei Xu, Jorge Gascon*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

The increasing demand for base chemicals i.e., ethylene and propylene, along with the expected peak in gasoline and fuels demand, are stirring intense research into refineries to be built around processes that maximize the production of chemicals (oil to chemicals, OTC, processes). One of the main challenges at hand for OTC technologies is the formulation of appropriate catalysts able to handle the wide boiling point of the feed and to withstand continuous operation at industrial scale. Hydrothermal degradation, coke deposition and the presence of impurities, such as metals, sulfur and nitrogen containing species, in the feedstock affect catalyst lifetime, activity and selectivity. In this work, we evaluate long term catalyst stability along with the main causes of reversible and irreversible catalyst deactivation. Our results demonstrate that formulation prevents, to a large extent, the degradation of the zeolitic components of the catalyst. Metal deposition, on the other hand, results in a slight decrease in activity along with partial changes in selectivity patterns. The main reasons behind these changes are discussed in detail with the help of extensive characterization.

Original languageEnglish (US)
Pages (from-to)5657-5670
Number of pages14
JournalCatalysis Science and Technology
Volume12
Issue number18
DOIs
StatePublished - Aug 3 2022

ASJC Scopus subject areas

  • Catalysis

Fingerprint

Dive into the research topics of 'Understanding catalyst deactivation during the direct cracking of crude oil'. Together they form a unique fingerprint.

Cite this