TY - JOUR
T1 - Understanding Charge Transport in High-Mobility p-Doped Multicomponent Blend Organic Transistors
AU - Scaccabarozzi, Alberto D.
AU - Scuratti, Francesca
AU - Barker, Alex J.
AU - Basu, Aniruddha
AU - Paterson, Alexandra
AU - Fei, Zhuping
AU - Solomeshch, Olga
AU - Petrozza, Annamaria
AU - Tessler, Nir
AU - Heeney, Martin
AU - Anthopoulos, Thomas D.
AU - Caironi, Mario
N1 - KAUST Repository Item: Exported on 2023-01-09
Acknowledgements: This work was financially supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program “HEROIC,” grant agreement 638059. This work was partially carried out at Polifab, the micro- and nanotechnology center of the Politecnico di Milano. GIWAXS experiments were performed at BL11 NCD-SWEET beamline at ALBA Synchrotron (Spain) with the collaboration of Dr. Eduardo Solano. T.D.A. is grateful to King Abdullah University of Science and Technology (KAUST) for financial support.
PY - 2020/9/11
Y1 - 2020/9/11
N2 - The use of ternary systems comprising polymers, small molecules, and molecular dopants represents a promising approach for the development of high-mobility, solution-processed organic transistors. However, the current understanding of the charge transport in these complex systems, and particularly the role of molecular doping, is rather limited. Here, the role of the individual components in enhancing hole transport in the best-performing ternary blend systems comprising the small molecule 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT), the conjugated polymer indacenodithiophene-alt-benzothiadiazole (C16IDT-BT), and the molecular p-type dopant (C60F48) is investigated. Temperature-dependent charge transport measurements reveal different charge transport regimes depending on the blend composition, crossing from a thermally activated to a band-like behavior. Using the charge-modulation spectroscopy technique, it is shown that in the case of the pristine blend, holes relax onto the conjugated polymer phase where shallow traps dominate carrier transport. Addition of a small amount of C60F48 deactivates those shallow traps allowing for a higher degree of hole delocalization within the highly crystalline C8-BTBT domains located on the upper surface of the blend film. Such synergistic effect of a highly ordered C8-BTBT phase, a polymer bridging grain boundaries, and p-doping results in the exceptionally high hole mobilities and band-like transport observed in this blend system.
AB - The use of ternary systems comprising polymers, small molecules, and molecular dopants represents a promising approach for the development of high-mobility, solution-processed organic transistors. However, the current understanding of the charge transport in these complex systems, and particularly the role of molecular doping, is rather limited. Here, the role of the individual components in enhancing hole transport in the best-performing ternary blend systems comprising the small molecule 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT), the conjugated polymer indacenodithiophene-alt-benzothiadiazole (C16IDT-BT), and the molecular p-type dopant (C60F48) is investigated. Temperature-dependent charge transport measurements reveal different charge transport regimes depending on the blend composition, crossing from a thermally activated to a band-like behavior. Using the charge-modulation spectroscopy technique, it is shown that in the case of the pristine blend, holes relax onto the conjugated polymer phase where shallow traps dominate carrier transport. Addition of a small amount of C60F48 deactivates those shallow traps allowing for a higher degree of hole delocalization within the highly crystalline C8-BTBT domains located on the upper surface of the blend film. Such synergistic effect of a highly ordered C8-BTBT phase, a polymer bridging grain boundaries, and p-doping results in the exceptionally high hole mobilities and band-like transport observed in this blend system.
UR - http://hdl.handle.net/10754/666291
UR - https://onlinelibrary.wiley.com/doi/10.1002/aelm.202000539
UR - http://www.scopus.com/inward/record.url?scp=85090770948&partnerID=8YFLogxK
U2 - 10.1002/aelm.202000539
DO - 10.1002/aelm.202000539
M3 - Article
SN - 2199-160X
VL - 6
SP - 2000539
JO - Advanced Electronic Materials
JF - Advanced Electronic Materials
IS - 10
ER -