Abstract
We construct a class of multigrid methods for convection-diffusion problems. The proposed algorithms use first order stable monotone schemes to precondition the second order standard Galerkin finite element discretization. To speed up the solution process of the lower order schemes, cross-wind-block reordering of the unknowns is applied. A V-cycle iteration, based on these algorithms, is then used as a preconditioner in GMRES. The numerical examples show that this method is convergent without imposing any constraint on the coarsest grid and the convergence of the preconditioned method is uniform.
Original language | English (US) |
---|---|
Pages (from-to) | 385-399 |
Number of pages | 15 |
Journal | Advances in Computational Mathematics |
Volume | 20 |
Issue number | 4 |
DOIs | |
State | Published - May 1 2004 |
Externally published | Yes |
ASJC Scopus subject areas
- Computational Mathematics
- Applied Mathematics