TY - JOUR
T1 - Unmatched Level of Molecular Convergence among Deeply Divergent Complex Multicellular Fungi
AU - Merenyi, Zsolt
AU - Prasanna, Arun N.
AU - Wang, Zheng
AU - Kovacs, Karoly
AU - Hegedus, Botond
AU - Balint, Balazs
AU - Papp, Balazs
AU - Townsend, Jeffrey P.
AU - Nagy, Laszlo G.
N1 - KAUST Repository Item: Exported on 2021-07-13
Acknowledgements: We acknowledge inspiring discussions of this topic in the Fungal Genomics and Evolution Laboratory (Szeged, Hungary). We are thankful to Marin Talbot Brewer, Gunther Doehlemann, and Jon Magnuson for permission to utilize unpublished genomic data of Exobasidiummaculosum, Exobasidium vaccinii, and Melanotaenium endogenum, respectively. This work was supported by the "Momentum" program of the Hungarian Academy of Sciences (contract no. LP2014/12 to L.G.N.) and the European Research Council (grant no. 758161 to L.G.N.); GINOP-2.3.2-15-2016- 00052 (to L.G.N.), "Frontline" Research Excellence Programme of the National Research, Development and Innovation Office, Hungary (KKP-129814 to B.P.), GINOP-2.3.2-15-2016- 00026 (iChamber to B.P.), The European Union's Horizon 2020 research and innovation program under Grant Agreement No. 739593 (to B.P.), and National Science Foundation IOS 1457044 and IOS 1916137 (to J.P.T.).
PY - 2020
Y1 - 2020
N2 - Abstract
Convergent evolution is pervasive in nature, but it is poorly understood how various constraints and natural selection limit the diversity of evolvable phenotypes. Here, we analyze the transcriptome across fruiting body development to understand the independent evolution of complex multicellularity in the two largest clades of fungi—the Agarico- and Pezizomycotina. Despite >650 My of divergence between these clades, we find that very similar sets of genes have convergently been co-opted for complex multicellularity, followed by expansions of their gene families by duplications. Over 82% of shared multicellularity-related gene families were expanding in both clades, indicating a high prevalence of convergence also at the gene family level. This convergence is coupled with a rich inferred repertoire of multicellularity-related genes in the most recent common ancestor of the Agarico- and Pezizomycotina, consistent with the hypothesis that the coding capacity of ancestral fungal genomes might have promoted the repeated evolution of complex multicellularity. We interpret this repertoire as an indication of evolutionary predisposition of fungal ancestors for evolving complex multicellular fruiting bodies. Our work suggests that evolutionary convergence may happen not only when organisms are closely related or are under similar selection pressures, but also when ancestral genomic repertoires render certain evolutionary trajectories more likely than others, even across large phylogenetic distances.
AB - Abstract
Convergent evolution is pervasive in nature, but it is poorly understood how various constraints and natural selection limit the diversity of evolvable phenotypes. Here, we analyze the transcriptome across fruiting body development to understand the independent evolution of complex multicellularity in the two largest clades of fungi—the Agarico- and Pezizomycotina. Despite >650 My of divergence between these clades, we find that very similar sets of genes have convergently been co-opted for complex multicellularity, followed by expansions of their gene families by duplications. Over 82% of shared multicellularity-related gene families were expanding in both clades, indicating a high prevalence of convergence also at the gene family level. This convergence is coupled with a rich inferred repertoire of multicellularity-related genes in the most recent common ancestor of the Agarico- and Pezizomycotina, consistent with the hypothesis that the coding capacity of ancestral fungal genomes might have promoted the repeated evolution of complex multicellularity. We interpret this repertoire as an indication of evolutionary predisposition of fungal ancestors for evolving complex multicellular fruiting bodies. Our work suggests that evolutionary convergence may happen not only when organisms are closely related or are under similar selection pressures, but also when ancestral genomic repertoires render certain evolutionary trajectories more likely than others, even across large phylogenetic distances.
UR - http://hdl.handle.net/10754/631112
UR - https://academic.oup.com/mbe/article/37/8/2228/5810091
UR - http://www.scopus.com/inward/record.url?scp=85089205089&partnerID=8YFLogxK
U2 - 10.1093/molbev/msaa077
DO - 10.1093/molbev/msaa077
M3 - Article
C2 - 32191325
SN - 1537-1719
VL - 37
SP - 2228
EP - 2240
JO - MOLECULAR BIOLOGY AND EVOLUTION
JF - MOLECULAR BIOLOGY AND EVOLUTION
IS - 8
ER -