Unraveling the vector nature of generalized space-fractional Bessel beams

Aqsa Ehsan, Muhammad Qasim Mehmood, Kashif Riaz, Yee Sin Ang, Muhammad Zubair

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

We introduce an exact analytical solution of the homogeneous space-fractional Helmholtz equation in cylindrical coordinates. This solution, called the vector space-fractional Bessel beam (SFBB), has been established from the Lorenz gauge condition and Hertz vector transformations. We perform scalar and vector wave analysis focusing on electromagnetics applications, especially in cases where the dimensions of the beam are comparable to its wavelength (kr≈k). The propagation characteristics such as the diffraction and self-healing properties have been explored with particular emphasis on the polarization states and transverse propagation modes. Due to continuous order orbital angular momen.
Original languageEnglish (US)
JournalPhysical Review A
Volume104
Issue number2
DOIs
StatePublished - Aug 1 2021
Externally publishedYes

Fingerprint

Dive into the research topics of 'Unraveling the vector nature of generalized space-fractional Bessel beams'. Together they form a unique fingerprint.

Cite this