Abstract
We introduce a passive micromixer with novel architecture using photopatterned porous polymer monoliths (PPM) and demonstrate an improvement in mixing efficiency by monitoring the fluorescence of an on-chip labeling reaction. UV light was used to photopattern a periodic arrangement of PPM structures directly within the channel of a plastic microfluidic chip. By optimizing the composition of the polymerization solution and irradiation time we demonstrate the ability to photopattern PPM in regularly repeating 100 m segments at the tee-junction of the disposable device. To evaluate the efficiency of this dual functional mixer-reactor fluorescamine and lysine were introduced in separate channels upstream of the tee-junction and the intensity of laser-induced fluorescence resulting from the fluorogenic labeling reaction was monitored. The fluorescence level after the photopatterned periodic monolith configuration was 22% greater than both an equivalent 1 cm continuous segment of PPM and an open channel. Results indicate that this periodic arrangement of PPM, with regularly spaced open areas between 100 m plugs of PPM, is directly responsible for enhancing the mixing and overall rate of chemical reaction in the system. In addition to facilitating preparation of a dual functional mixer-reactor, the ability to accurately photopattern PPM is an enabling technology for seamlessly integrating multiple monoliths into a single device. This technology will be particularly important to proteomic applications requiring preconcentration, enzymatic digestion and two-dimensional separations.
Original language | English (US) |
---|---|
Pages (from-to) | 877-883 |
Number of pages | 7 |
Journal | Lab on a Chip |
Volume | 9 |
Issue number | 7 |
DOIs | |
State | Published - 2009 |
Externally published | Yes |
ASJC Scopus subject areas
- Bioengineering
- Biochemistry
- General Chemistry
- Biomedical Engineering