Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction

Mary Theresa M. Pendergast, Jodie M. Nygaard, Asim K. Ghosh, Eric M.V. Hoek

Research output: Contribution to journalArticlepeer-review

250 Scopus citations

Abstract

Composite reverse osmosis (RO) membranes were formed by interfacial polymerization of polyamide thin films over pure polysulfone and nanocomposite-polysulfone support membranes. Nanocomposite support membranes were formed from amorphous non-porous silica and crystalline microporous zeolite nanoparticles. For each hand-cast membrane, water flux and NaCl rejection were monitored over time at two different applied pressures. Nanocomposite-polysulfone supported RO membranes generally had higher initial permeability and experienced less flux decline due to compaction than pure polysulfone supported membranes. In addition, observed salt rejection tended to increase as flux declined from compaction. Crosssectional SEM images verified significant reduction in thickness of pure polysulfone supports, whereas nanocomposites better resisted compaction due to enhanced mechanical stability imparted by the nanoparticles. A conceptual model was proposed to explain the mechanistic relationship between support membrane compaction and observed changes in water flux and salt rejection. As the support membrane compacts, skin layer pore constriction increased the effective path length for diffusion through the composite membranes, which reduced both water and salt permeability identically. However, experimental salt permeability tended to decline to a greater extent than water permeability; hence, the observed changes in flux and rejection might also be related to structural changes in the polyamide thin film. © 2010 Elsevier B.V. All rights reserved.
Original languageEnglish (US)
Pages (from-to)255-263
Number of pages9
JournalDesalination
Volume261
Issue number3
DOIs
StatePublished - Oct 2010
Externally publishedYes

Fingerprint

Dive into the research topics of 'Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction'. Together they form a unique fingerprint.

Cite this