Abstract
Multifunctional single crystalline tin-doped indium oxide (ITO) nanowires with tuned Sn doping levels are synthesized via a vapor transport method. The Sn concentration in the nanowires can reach 6.4at.% at a synthesis temperature of 840 °C, significantly exceeding the Sn solubility in ITO bulks grown at comparable temperatures, which we attribute to the unique feature of the vapor-liquid-solid growth. As a promising transparent conducting oxide nanomaterial, layers of these ITO nanowires exhibit a sheet resistance as low as and measurements on individual nanowires give a resistivity of 2.4 × 10-4Ωcm with an electron density up to 2.6 × 10 20cm-3, while the optical transmittance in the visible regime can reach ∼ 80%. Under the ultraviolet excitation the ITO nanowire samples emit blue light, which can be ascribed to transitions related to defect levels. Furthermore, a room temperature ultraviolet light emission is observed in these ITO nanowires for the first time, and the exciton-related radiative process is identified by using temperature-dependent photoluminescence measurements.
Original language | English (US) |
---|---|
Article number | 195706 |
Journal | Nanotechnology |
Volume | 22 |
Issue number | 19 |
DOIs | |
State | Published - May 13 2011 |
Externally published | Yes |
ASJC Scopus subject areas
- Bioengineering
- General Chemistry
- General Materials Science
- Mechanics of Materials
- Mechanical Engineering
- Electrical and Electronic Engineering