Abstract
The generative adversarial network (GAN) has received considerable attention recently as a model for data synthesis, without an explicit specification of a likelihood function. There has been commensurate interest in leveraging likelihood estimates to improve GAN training. To enrich the understanding of this fast-growing yet almost exclusively heuristic-driven subject, we elucidate the theoretical roots of some of the empirical attempts to stabilize and improve GAN training with the introduction of likelihoods. We highlight new insights from variational theory of diffusion processes to derive a likelihood-based regularizing scheme for GAN training, and present a novel approach to train GANs with an unnormalized distribution instead of empirical samples. To substantiate our claims, we provide experimental evidence on how our theoretically-inspired new algorithms improve upon current practice.
Original language | English (US) |
---|---|
Title of host publication | 36th International Conference on Machine Learning, ICML 2019 |
Publisher | International Machine Learning Society (IMLS)[email protected] |
Pages | 10777-10786 |
Number of pages | 10 |
ISBN (Print) | 9781510886988 |
State | Published - Jan 1 2019 |
Externally published | Yes |