TY - JOUR
T1 - Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase- activating polypeptide (PACAP) potentiate the glutamate-evoked release of arachidonic acid from mouse cortical neurons. Evidence for a cAMP-independent mechanism
AU - Stella, Nephi
AU - Magistretti, Pierre J.
PY - 1996
Y1 - 1996
N2 - Glutamatergic neurotransmission is associated with release of arachidonic acid (AA) from membrane phospholipids of both neurons and astrocytes. Since free AA has been shown to enhance glutamate-mediated synaptic transmission, it can be postulated that glutamate release and AA formation constitute a positive feed-back mechanism for sustained excitatory neurotransmission. In the present study, we examined whether the glutamate- evoked release of AA could be modulated by peptides. Using mouse cortical neurons in primary cultures, we show that the release of AA evoked by glutamate is potentiated by vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide (PACAP). This effect is mediated through the activation of PACAP I receptors. However, several arguments show that this potentiating mechanism does not involve the cAMP/PKA pathway. 1) Increasing intracellular cAMP by either cholera toxin, forskolin, or 8-Br- cAMP treatments does not affect the glutamate-evoked release of AA; 2) potentiation of the glutamate response by PACAP is not prevented by the PKA inhibitor 8-Br-R(p)-cAMPS. Also, an involvement of the phospholipase C protein kinase C pathways is unlikely since inhibitors of both phospholipase C (i.e. U-73122) and protein kinase C (i.e. Ro 318220) do not affect the potentiation of the glutamate response by PACAP. These observations indicate an effect mediated by PACAP I receptors, which does not involve the second messenger pathways classically associated with activation of this type of receptors. Furthermore, results indicate that this potentiating mechanism mediated by PACAP I receptor acts at a level downstream of the glutamate receptor-mediated calcium influx.
AB - Glutamatergic neurotransmission is associated with release of arachidonic acid (AA) from membrane phospholipids of both neurons and astrocytes. Since free AA has been shown to enhance glutamate-mediated synaptic transmission, it can be postulated that glutamate release and AA formation constitute a positive feed-back mechanism for sustained excitatory neurotransmission. In the present study, we examined whether the glutamate- evoked release of AA could be modulated by peptides. Using mouse cortical neurons in primary cultures, we show that the release of AA evoked by glutamate is potentiated by vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide (PACAP). This effect is mediated through the activation of PACAP I receptors. However, several arguments show that this potentiating mechanism does not involve the cAMP/PKA pathway. 1) Increasing intracellular cAMP by either cholera toxin, forskolin, or 8-Br- cAMP treatments does not affect the glutamate-evoked release of AA; 2) potentiation of the glutamate response by PACAP is not prevented by the PKA inhibitor 8-Br-R(p)-cAMPS. Also, an involvement of the phospholipase C protein kinase C pathways is unlikely since inhibitors of both phospholipase C (i.e. U-73122) and protein kinase C (i.e. Ro 318220) do not affect the potentiation of the glutamate response by PACAP. These observations indicate an effect mediated by PACAP I receptors, which does not involve the second messenger pathways classically associated with activation of this type of receptors. Furthermore, results indicate that this potentiating mechanism mediated by PACAP I receptor acts at a level downstream of the glutamate receptor-mediated calcium influx.
UR - http://www.scopus.com/inward/record.url?scp=0029835337&partnerID=8YFLogxK
U2 - 10.1074/jbc.271.39.23705
DO - 10.1074/jbc.271.39.23705
M3 - Article
C2 - 8798593
AN - SCOPUS:0029835337
SN - 0021-9258
VL - 271
SP - 23705
EP - 23710
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 39
ER -