TY - JOUR
T1 - Versatile N-Doped MXene Ink for Printed Electrochemical Energy Storage Application
AU - Yu, Lianghao
AU - Fan, Zhaodi
AU - Shao, Yuanlong
AU - Tian, Zhengnan
AU - Sun, Jingyu
AU - Liu, Zhongfan
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: L.H.Y. and Z.D.F. contributed equally to this work. This work was supported by the National Natural Science Foundation of China (51702225), National Key Research and Development Program (2016YFA0200103), and Jiangsu Youth Science Foundation (BK20170336). The authors acknowledge the support from Suzhou Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Suzhou, China.
PY - 2019/7/30
Y1 - 2019/7/30
N2 - Printing is regarded as a revolutionary and feasible technique to guide the fabrication of versatile functional systems with designed architectures. 2D MXenes are nowadays attractive in printed energy storage devices. However, owing to the van der Waals interaction between the MXene layers, the restacking issues within the printed electrodes can significantly impede the ion/electrolyte transport and hence handicap the electrochemical performances. Herein, a melamine formaldehyde templating method is demonstrated to develop crumpled nitrogen-doped MXene (MXene-N) nanosheets. The nitrogen doping boosts the electrochemical performances of MXene via enhanced conductivity and redox activity. Accordingly, two types of MXene-N inks are prepared throughout the optimization of the ink viscosity to fit the 2D screen printing and 3D extrusion printing, respectively. As a result, the screen printed MXene-N microsupercapacitor delivers an areal capacitance of 70.1 mF cm−2 and outstanding mechanical robustness. Furthermore, the 3D-printed MXene-N based supercapacitor manifests an areal capacitance of 8.2 F cm−2 for a three-layered electrode and readily stores a high areal energy density of 0.42 mWh cm−2. The approach to harnessing such versatile MXene-N inks offers distinctive insights into the printed energy storage systems with high areal energy density and large scalability.
AB - Printing is regarded as a revolutionary and feasible technique to guide the fabrication of versatile functional systems with designed architectures. 2D MXenes are nowadays attractive in printed energy storage devices. However, owing to the van der Waals interaction between the MXene layers, the restacking issues within the printed electrodes can significantly impede the ion/electrolyte transport and hence handicap the electrochemical performances. Herein, a melamine formaldehyde templating method is demonstrated to develop crumpled nitrogen-doped MXene (MXene-N) nanosheets. The nitrogen doping boosts the electrochemical performances of MXene via enhanced conductivity and redox activity. Accordingly, two types of MXene-N inks are prepared throughout the optimization of the ink viscosity to fit the 2D screen printing and 3D extrusion printing, respectively. As a result, the screen printed MXene-N microsupercapacitor delivers an areal capacitance of 70.1 mF cm−2 and outstanding mechanical robustness. Furthermore, the 3D-printed MXene-N based supercapacitor manifests an areal capacitance of 8.2 F cm−2 for a three-layered electrode and readily stores a high areal energy density of 0.42 mWh cm−2. The approach to harnessing such versatile MXene-N inks offers distinctive insights into the printed energy storage systems with high areal energy density and large scalability.
UR - http://hdl.handle.net/10754/656761
UR - https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201901839
UR - http://www.scopus.com/inward/record.url?scp=85070263524&partnerID=8YFLogxK
U2 - 10.1002/aenm.201901839
DO - 10.1002/aenm.201901839
M3 - Article
SN - 1614-6832
VL - 9
SP - 1901839
JO - Advanced Energy Materials
JF - Advanced Energy Materials
IS - 34
ER -