Visualization of big SPH simulations via compressed octree grids

Florian Reichl, Marc Treib, Rudiger Westermann

Research output: Chapter in Book/Report/Conference proceedingConference contribution

21 Scopus citations

Abstract

Interactive and high-quality visualization of spatially continuous 3D fields represented by scattered distributions of billions of particles is challenging. One common approach is to resample the quantities carried by the particles to a regular grid and to render the grid via volume ray-casting. In large-scale applications such as astrophysics, however, the required grid resolution can easily exceed 10K samples per spatial dimension, letting resampling approaches appear unfeasible. In this paper we demonstrate that even in these extreme cases such approaches perform surprisingly well, both in terms of memory requirement and rendering performance. We resample the particle data to a multiresolution multiblock grid, where the resolution of the blocks is dictated by the particle distribution. From this structure we build an octree grid, and we then compress each block in the hierarchy at no visual loss using wavelet-based compression. Since decompression can be performed on the GPU, it can be integrated effectively into GPU-based out-of-core volume ray-casting. We compare our approach to the perspective grid approach which resamples at run-time into a view-aligned grid. We demonstrate considerably faster rendering times at high quality, at only a moderate memory increase compared to the raw particle set. © 2013 IEEE.
Original languageEnglish (US)
Title of host publication2013 IEEE International Conference on Big Data
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Pages71-78
Number of pages8
ISBN (Print)9781479912933
DOIs
StatePublished - Oct 2013
Externally publishedYes

Fingerprint

Dive into the research topics of 'Visualization of big SPH simulations via compressed octree grids'. Together they form a unique fingerprint.

Cite this