Waste-to-wealth approach in water economy: The case of beneficiation of mercury-contaminated water in hydrogen production

Abdul Malek, G. Ranga Rao, Tiju Thomas

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Heavy metals (Hg, Cd, Pb, etc.) are micro-pollutants and result in water contamination. Significant bio-concentration of heavy metal like Hg can lead to fatal disease such as Minamata. Given this context, heavy metal removal from wastewater is essential before discharge. The wastewater treatment process requires considerable amount of energy which is being met by the conventional carbon-based fuels. This contributes to the global carbon dioxide emission, and hence global warming. Therefore, if clean energy sourcing is enabled during the treatment of the wastewater; it would offer obvious advantages. If the energy production is ‘clean’ and achieved via the process itself, it would serve two outcomes: (a) meeting the energy demand for wastewater treatment, and (b) getting rid of the need for external ‘carbon-based’ energy. Recently a few research articles have reported simultaneous clean energy production from wastewater during its treatment. Thus, the energy demand of the wastewater treatment process can be potentially met with the clean energy produced during the process. In this review, we will discuss mercury-contaminated wastewater treatment with simultaneous hydrogen production. We will provide a brief overview of waste-to-wealth approaches currently prevailing in water economy, recent mercury removal processes, and discuss future possibilities of self-sustained Hg-contaminated wastewater treatment.
Original languageEnglish (US)
Pages (from-to)26677-26692
Number of pages16
JournalInternational Journal of Hydrogen Energy
Volume46
Issue number52
DOIs
StatePublished - Jul 29 2021
Externally publishedYes

ASJC Scopus subject areas

  • Energy Engineering and Power Technology
  • Condensed Matter Physics
  • Fuel Technology
  • Renewable Energy, Sustainability and the Environment

Fingerprint

Dive into the research topics of 'Waste-to-wealth approach in water economy: The case of beneficiation of mercury-contaminated water in hydrogen production'. Together they form a unique fingerprint.

Cite this