Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century

T. I.E. Veldkamp, Y. Wada, J. C.J.H. Aerts, P. Döll, S. N. Gosling, J. Liu, Y. Masaki, T. Oki, S. Ostberg, Y. Pokhrel, Y. Satoh, H. Kim, P. J. Ward

Research output: Contribution to journalArticlepeer-review

315 Scopus citations

Abstract

Water scarcity is rapidly increasing in many regions. In a novel, multi-model assessment, we examine how human interventions (HI: land use and land cover change, man-made reservoirs and human water use) affected monthly river water availability and water scarcity over the period 1971-2010. Here we show that HI drastically change the critical dimensions of water scarcity, aggravating water scarcity for 8.8% (7.4-16.5%) of the global population but alleviating it for another 8.3% (6.4-15.8%). Positive impacts of HI mostly occur upstream, whereas HI aggravate water scarcity downstream; HI cause water scarcity to travel downstream. Attribution of water scarcity changes to HI components is complex and varies among the hydrological models. Seasonal variation in impacts and dominant HI components is also substantial. A thorough consideration of the spatially and temporally varying interactions among HI components and of uncertainties is therefore crucial for the success of water scarcity adaptation by HI.
Original languageEnglish (US)
JournalNature Communications
Volume8
DOIs
StatePublished - Jun 15 2017
Externally publishedYes

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Chemistry
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century'. Together they form a unique fingerprint.

Cite this