Waveguide Dispersion Tailoring by Using Embedded Impedance Surfaces

Yijing He, Yue Li, Liang Zhu, Hakan Bagci, Danilo Erricolo, Pai-Yen Chen

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

The capability to tailor the dispersion and the cut-off frequency of waveguides is of importance, as these essential parameters govern the operating frequency range and the waveguide dimension. Here, we propose the concept of substrate-integrated impedance surface (SIIS) that enables arbitrary control of propagation characteristics of closed-shape waveguides. Specifically, we develop a theoretical framework for the simplest form of SIIS constituted by a one-dimensional array of blind vias, which is equivalent to a homogenized surface capacitance embedded in the waveguide. We theoretically and experimentally demonstrate that loading a substrate-integrated waveguide (SIW) with a capacitive SIIS can effectively reduce its cut-off frequency, regardless of the transverse dimension of the SIW. In addition, a SIIS-loaded SIW exhibits several intriguing phenomena, such as the slow-wave guiding properties and the local field concentration. This SIIS-loading technique may open up new possibilities for miniaturization of various waveguide-based components and for enhancement of their uses in microwave sensing and nonlinear functions.
Original languageEnglish (US)
JournalPhysical Review Applied
Volume10
Issue number6
DOIs
StatePublished - Dec 11 2018

Fingerprint

Dive into the research topics of 'Waveguide Dispersion Tailoring by Using Embedded Impedance Surfaces'. Together they form a unique fingerprint.

Cite this