Wavenumber illumination analysis validation: Which elastic anisotropic parameters can we resolve?

Vladimir Kazei, Dmitry Kabanov, Tariq Ali Alkhalifah

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Vertical fractures are often embedded into a finely layered medium, which leads to an effective medium with orthorhombic anisotropy. Ten independent parameters are necessary to completely characterize such a medium, including density and excluding rotations. Through wavenumber illumination analysis, it has been shown that only six of these parameters can be reliably inverted from P - P scattered energy. Here, we demonstrate that with the addition of converted waves, nine parameters can principally be recovered. We also demonstrate that the one-dimensional null space is along a linear combination of the shear-wave dimensionless parameters, g1 and g2, or a linear combination of the elastic coefficients C12 and C66 parameters. This null space can be captured by the Thomsen g parameter if it is introduced into the parameterization. Finally and most importantly, there is still a lot of skepticism around the applicability of multiparameter model wavenumber illumination analysis, so we validate the radiation patterns using finite-difference modeling code. We find that theoretical scattering patterns are in good agreement with numerically modeled wavefields scattered from thin layers. The latter is a step towards applications of similar analysis, initially in the framework of time-lapse monitoring of the reservoirs, where the perturbations of parameters are generally small.
Original languageEnglish (US)
Title of host publicationSEG Technical Program Expanded Abstracts 2019
PublisherSociety of Exploration Geophysicists
Number of pages5
StatePublished - Aug 10 2019


Dive into the research topics of 'Wavenumber illumination analysis validation: Which elastic anisotropic parameters can we resolve?'. Together they form a unique fingerprint.

Cite this