TY - JOUR
T1 - Well-defined poly(ester amide)-based homo- and block copolymers by one-pot organocatalytic anionic ring-opening copolymerization of N-sulfonyl aziridines and cyclic anhydrides
AU - Hadjichristidis, Nikos
AU - Xu, Jiaxi
N1 - KAUST Repository Item: Exported on 2020-12-28
PY - 2020/12/22
Y1 - 2020/12/22
N2 - We report a new synthetic methodology for poly(ester amide)s by anionic ring-opening copolymerization of N -sulfonyl aziridines and cyclic anhydrides. Phosphazenes organocatalysts have been found to promote a highly-active, controlled, and selective, alternating copolymerization in the absence of any competitive side reaction (zwitterionic and transacylation). Mechanistic studies have shown first-order dependence of the copolymerization rate on N -sulfonyl aziridines and phosphazenes, and zero-order on cyclic anhydrides. This one-pot methodology leads not only to homopolymers but also to poly(ester amide)-based block copolymers. Two catalytic cycles involving ring-opening alternating copolymerization of N -sulfonyl aziridines with cyclic anhydrides and ring-opening polymerization of N -sulfonyl aziridines have been proposed to explain the one-pot synthesis of poly(ester amide)-based homo- and block copolymers.
AB - We report a new synthetic methodology for poly(ester amide)s by anionic ring-opening copolymerization of N -sulfonyl aziridines and cyclic anhydrides. Phosphazenes organocatalysts have been found to promote a highly-active, controlled, and selective, alternating copolymerization in the absence of any competitive side reaction (zwitterionic and transacylation). Mechanistic studies have shown first-order dependence of the copolymerization rate on N -sulfonyl aziridines and phosphazenes, and zero-order on cyclic anhydrides. This one-pot methodology leads not only to homopolymers but also to poly(ester amide)-based block copolymers. Two catalytic cycles involving ring-opening alternating copolymerization of N -sulfonyl aziridines with cyclic anhydrides and ring-opening polymerization of N -sulfonyl aziridines have been proposed to explain the one-pot synthesis of poly(ester amide)-based homo- and block copolymers.
UR - http://hdl.handle.net/10754/666683
UR - https://onlinelibrary.wiley.com/doi/10.1002/anie.202015339
U2 - 10.1002/anie.202015339
DO - 10.1002/anie.202015339
M3 - Article
C2 - 33351198
SN - 1433-7851
JO - Angewandte Chemie International Edition
JF - Angewandte Chemie International Edition
ER -