Wide range highly sensitive pressure sensor based on heated micromachined arch beam

Nouha Alcheikh, Amal Hajjaj, Mohammad I. Younis

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Miniaturized air-pressure sensing devices has received increasing attention during the past few decades. Pressure sensors have been explored in various potential applications, such as industrial control, healthcare, medical testing, and environmental monitoring [1–2]. Different sensing mechanisms and designs have been used for the detection of air-pressure. Of particular importance are resonant pressure sensors based on tracking the change in resonance frequency of the device with pressure. To improve the pressure sensor sensitivity, various designs have been investigated including carbon nanotubes, microcantilever, and bridge resonators. In a recent study [3], we showed a resonant pressure sensor based on an electrothermally heated clamped-clamped straight beam (cooling effect). We showed that operating the resonator near the buckling point maximizes its sensitivity [3]. In this work, we will focus on the detection of air pressure using an electrothermally heated initially curved beam exhibiting veering among its first two symmetric vibration modes, which offers more continuity in frequency variations, and hence measurements compared to buckled beams. The presented approach shows significant advantages in term of sensitivity and wide pressure range.
Original languageEnglish (US)
Title of host publicationVolume 4: 24th Design for Manufacturing and the Life Cycle Conference; 13th International Conference on Micro- and Nanosystems
PublisherAmerican Society of Mechanical Engineers
ISBN (Print)9780791859223
DOIs
StatePublished - Nov 25 2019

Fingerprint

Dive into the research topics of 'Wide range highly sensitive pressure sensor based on heated micromachined arch beam'. Together they form a unique fingerprint.

Cite this