TY - JOUR
T1 - Wind power prediction using bootstrap aggregating trees approach to enabling sustainable wind power integration in a smart grid
AU - Harrou, Fouzi
AU - Saidi, Ahmed
AU - Sun, Ying
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): OSR-2019-CRG7-3800
Acknowledgements: This publication is based upon work supported by King Abdullah University of Science and Technology (KAUST), Office of Sponsored Research (OSR) under Award No: OSR-2019-CRG7-3800.
PY - 2019/10/9
Y1 - 2019/10/9
N2 - Precise prediction of wind power is important in sustainably integrating the wind power in a smart grid. The need for short-term predictions is increased with the increasing installed capacity. The main contribution of this work is adopting bagging ensembles of decision trees approach for wind power prediction. The choice of this regression approach is motivated by its ability to take advantage of many relatively weak single trees to reach a high prediction performance compared to single regressors. Moreover, it reduces the overall error and has the capacity to merge numerous models. The performance of bagged trees for predicting wind power has been compared to four commonly know prediction methods namely multivariate linear regression, support vector regression, principal component regression, and partial least squares regression. Real measurements recorded every ten minutes from an actual wind turbine are used to illustrate the prediction quality of the studied methods. Results showed that the bagged trees regression approach reached the highest prediction performance with a coefficient of determination of 0.982. The result showed that the bagged trees approach is followed by support vector regression with Gaussian kernel, the same model when using a quadratic kernel, and the multivariate linear regression, partial least squares, and principal component regression gave the lowest prediction. The investigated models in this study can represent a helpful tool for model-based anomaly detection in wind turbines.
AB - Precise prediction of wind power is important in sustainably integrating the wind power in a smart grid. The need for short-term predictions is increased with the increasing installed capacity. The main contribution of this work is adopting bagging ensembles of decision trees approach for wind power prediction. The choice of this regression approach is motivated by its ability to take advantage of many relatively weak single trees to reach a high prediction performance compared to single regressors. Moreover, it reduces the overall error and has the capacity to merge numerous models. The performance of bagged trees for predicting wind power has been compared to four commonly know prediction methods namely multivariate linear regression, support vector regression, principal component regression, and partial least squares regression. Real measurements recorded every ten minutes from an actual wind turbine are used to illustrate the prediction quality of the studied methods. Results showed that the bagged trees regression approach reached the highest prediction performance with a coefficient of determination of 0.982. The result showed that the bagged trees approach is followed by support vector regression with Gaussian kernel, the same model when using a quadratic kernel, and the multivariate linear regression, partial least squares, and principal component regression gave the lowest prediction. The investigated models in this study can represent a helpful tool for model-based anomaly detection in wind turbines.
UR - http://hdl.handle.net/10754/659075
UR - https://linkinghub.elsevier.com/retrieve/pii/S0196890419310830
UR - http://www.scopus.com/inward/record.url?scp=85072987375&partnerID=8YFLogxK
U2 - 10.1016/j.enconman.2019.112077
DO - 10.1016/j.enconman.2019.112077
M3 - Article
SN - 0196-8904
VL - 201
SP - 112077
JO - Energy Conversion and Management
JF - Energy Conversion and Management
ER -