Wireless Capacitive Tactile Sensor Arrays for Sensitive/Delicate Robot Grasping

Serkan Ergun, Tobias Mitterer, Sherjeel Khan, Narendiran Anandan, Rishabh B. Mishra, Jurgen Kosel, Hubert Zangl

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Uncertainties in grasp prediction for unknown, arbitrarily shaped objects in cluttered environments and un- certainty of the kinematics (e.g., series elastic robots or soft robots) can lead to poor grasps. For delicate objects, such poor grasps may damage the objects when they are dropped or when high local pressure is introduced in the grasping process. We propose a tactile sensor concept that allows predicting the quality of a grasp such that the object can be safely moved without being dropped. This prediction is done using an initial low force grasp and the force is only increased when the contact area is sufficiently large. The proposed customizable wireless Capacitive Tactile Sensor Array (CTSA) uses the deformation of a polymer to assess the contact area and the force distribution. A common homogeneous deformable electrode is embedded in the polymer. This electrode does not require any patterning nor any electrical connection but to ground. We present the manufacturing process which allows for robust yet cost effective realizations with a variety of electrode materials including conductive inks, conductive textiles, metal meshes and metal sheets. With the different approaches, parameters such as sensitivity and recovery time can be adjusted. Furthermore, the robustness of the sensor towards strong forces and objects with sharp edges and corners is shown. Finally, we demonstrate the benefits of the proposed sensor for grasping in a series of scenarios with rigid and soft 3D printed objects of various shapes. Allowing a reasonable false positive rate, 100 % of unsuccessful grasps in our evaluation experiments could be detected from the initial low force grasp.

Original languageEnglish (US)
Title of host publication2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages10777-10784
Number of pages8
ISBN (Electronic)9781665491907
DOIs
StatePublished - 2023
Event2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023 - Detroit, United States
Duration: Oct 1 2023Oct 5 2023

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
Country/TerritoryUnited States
CityDetroit
Period10/1/2310/5/23

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Wireless Capacitive Tactile Sensor Arrays for Sensitive/Delicate Robot Grasping'. Together they form a unique fingerprint.

Cite this