TY - JOUR
T1 - Wireless Power Transfer for Future Networks: Signal Processing, Machine Learning, Computing, and Sensing
AU - Clerckx, Bruno
AU - Huang, Kaibin
AU - Varshney, Lav
AU - Ulukus, Sennur
AU - Alouini, Mohamed-Slim
N1 - KAUST Repository Item: Exported on 2021-11-21
Acknowledgements: This work has been partially supported by the EPSRC of UK under grant EP/P003885/1 and EP/R511547/1.
PY - 2021
Y1 - 2021
N2 - Wireless power transfer (WPT) is an emerging paradigm that will enable using wireless to its full potential in future networks, not only to convey information but also to deliver energy. Such networks will enable trillions of future low-power devices to sense, compute, connect, and energize anywhere, anytime, and on the move. The design of such future networks brings new challenges and opportunities for signal processing, machine learning, sensing, and computing so as to make the best use of the RF spectrum, radiation, and network infrastructure in providing cost-effective and realtime power supplies to wireless devices and enable wirelesspowered applications. In this paper, we first review recent signal processing techniques to make WPT and wireless information and power transfer (WIPT) as efficient as possible. Topics include high-power amplifier and energy harvester nonlinearities, active and passive beamforming, intelligent reflecting surfaces, receive combining with multi-antenna harvester, modulation, coding, waveform, large-scale (massive) multiple-input multipleoutput (MIMO), channel acquisition, transmit diversity, multiuser power region characterization, coordinated multipoint, and distributed antenna systems. Then, we overview two different design methodologies: the model and optimize approach relying on analytical system models, modern convex optimization, and communication/ information theory, and the learning approach based on data-driven end-to-end learning and physics-based learning. We discuss the pros and cons of each approach, especially when accounting for various nonlinearities in wireless-powered networks, and identify interesting emerging opportunities for the approaches to complement each other. Finally, we identify new emerging wireless technologies where WPT may play a key rolewireless-powered mobile edge computing and wirelesspowered sensingarguing WPT, communication, computation, and sensing must be jointly designed.
AB - Wireless power transfer (WPT) is an emerging paradigm that will enable using wireless to its full potential in future networks, not only to convey information but also to deliver energy. Such networks will enable trillions of future low-power devices to sense, compute, connect, and energize anywhere, anytime, and on the move. The design of such future networks brings new challenges and opportunities for signal processing, machine learning, sensing, and computing so as to make the best use of the RF spectrum, radiation, and network infrastructure in providing cost-effective and realtime power supplies to wireless devices and enable wirelesspowered applications. In this paper, we first review recent signal processing techniques to make WPT and wireless information and power transfer (WIPT) as efficient as possible. Topics include high-power amplifier and energy harvester nonlinearities, active and passive beamforming, intelligent reflecting surfaces, receive combining with multi-antenna harvester, modulation, coding, waveform, large-scale (massive) multiple-input multipleoutput (MIMO), channel acquisition, transmit diversity, multiuser power region characterization, coordinated multipoint, and distributed antenna systems. Then, we overview two different design methodologies: the model and optimize approach relying on analytical system models, modern convex optimization, and communication/ information theory, and the learning approach based on data-driven end-to-end learning and physics-based learning. We discuss the pros and cons of each approach, especially when accounting for various nonlinearities in wireless-powered networks, and identify interesting emerging opportunities for the approaches to complement each other. Finally, we identify new emerging wireless technologies where WPT may play a key rolewireless-powered mobile edge computing and wirelesspowered sensingarguing WPT, communication, computation, and sensing must be jointly designed.
UR - http://hdl.handle.net/10754/668781
UR - https://ieeexplore.ieee.org/document/9502719/
U2 - 10.1109/JSTSP.2021.3098478
DO - 10.1109/JSTSP.2021.3098478
M3 - Article
SN - 1941-0484
VL - 15
SP - 1060
EP - 1094
JO - IEEE Journal of Selected Topics in Signal Processing
JF - IEEE Journal of Selected Topics in Signal Processing
IS - 5
M1 - 5
ER -