Abstract
Catalytic oxidation is the most efficient method of minimizing the emissions of harmful pollutants and greenhouse gases. In this study, ZrO2-supported Pd catalysts are investigated for the catalytic oxidation of methane and ethylene. Pd/Y2O3-stabilized ZrO2 (Pd/YSZ) catalysts show attractive catalytic activity for methane and ethylene oxidation. The ZrO2 support containing up to 8 mol% Y2O3 improves the water resistance and hydrothermal stability of the catalyst. All catalysts are characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), O2-temperature-programmed desorption (O2-TPD), and CO-chemisorption techniques. It shows that high Pd dispersion and Pd–PdO reciprocation on the Pd/YSZ catalyst results in relatively high stability. In situ diffuse reflectance infrared Fourier-transform (DRIFT) experiments are performed to study the reaction over the surface of the catalyst. Compared with bimetallic catalysts (Pd : Pt), the same amounts of Pd and Pt supported on ZrO2 and Y2O3-stabilized ZrO2 catalysts show enhanced activity for methane and ethylene oxidation, respectively. A mixed hydrocarbon feed, containing methane and ethylene, lowers the CH4 light-off temperature by approximately 80 °C. This shows that ethylene addition has a promotional effect on the light-off temperature of methane.
Original language | English (US) |
---|---|
Pages (from-to) | 11910-11917 |
Number of pages | 8 |
Journal | RSC Advances |
Volume | 11 |
Issue number | 20 |
DOIs | |
State | Published - Mar 23 2021 |
ASJC Scopus subject areas
- General Chemical Engineering
- General Chemistry