Zambales ophiolite, Philippines - II. Sulfide petrology of the critical zone of the Acoje Massif

Teofilo A. Abrajano*, Jill D. Pasteris

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

41 Scopus citations

Abstract

The Acoje massif is part of a mafic-ultramafic complex, the Zambales ophiolite, and is a fragment of Mesozoic oceanic crust. This paper documents the occurrence and phase relations of sulfides and associated phases in the critical zone of the Acoje massif. The Acoje critical zone (ACZ) forms the basal cumulate sequence of the massif and consists of a variably serpentinized lower ultramafic zone and a relatively less altered upper mafic zone. Two distinct sulfide associations have been identified: (1) a troilite (±pyrrhotite)-dominated group hosted by the mafic zone and (2) a pentlandite-dominated group hosted by the ultramafic zone. Troilite-dominated assemblages represent the original mineralogy of magmatically precipitated sulfides in the entire cumulate sequence. The pentlandite-dominated group appears to have evolved from the primary magmatic sulfides during low-temperature re-equilibration. The paragenetic evolution from the magmatic assemblage to the low-temperature assemblage appears to have proceeded as follows: (1) S-rich hexagonal pyrrhotite+pentlandite+chalcopyrite (or cubanite)+magnetite, (2) S-poor hexagonal pyrrhotite+pentlandite+intermediate solid solution (iss) phase (and/or cubanite)+magnetite, (3) troilite (or mackinawite)+pentlandite+iss+magnetite, (4) troilite (or mackinawite)+pentlandite+iss+native Cu+magnetite, (5) pentlandite+native Cu+magnetite, and (6) pentlandite+native Cu+Fe-Ni alloy+magnetite. This evolutionary trend, in conjunction with the observed textural, chemical, and sulfur-isotopic relations, indicates that the native metal and alloy phases in the ACZ were produced by low-temperature reduction of the primary magmatic sulfides. Correlations between sulfide assemblages and coexisting silicate-hydrosilicate-oxide assemblages further indicate that this alteration occurred during retrograde serpentinization of the Acoje massif. Two end-member models that could explain the inferred low-temperature mineralogic evolution of the ACZ sulfides are described: (1) an isothermal reduction model and (2) a non-isothermal equilibration model. Both isothermal and non-isothermal effects apparently were involved in the development of variably reduced sulfide-oxide-metal assemblages from the initial magmatic sulfides.

Original languageEnglish (US)
Pages (from-to)64-77
Number of pages14
JournalContributions to Mineralogy and Petrology
Volume103
Issue number1
DOIs
StatePublished - Sep 1989
Externally publishedYes

ASJC Scopus subject areas

  • Geophysics
  • Geochemistry and Petrology

Fingerprint

Dive into the research topics of 'Zambales ophiolite, Philippines - II. Sulfide petrology of the critical zone of the Acoje Massif'. Together they form a unique fingerprint.

Cite this