TY - JOUR
T1 - Zeolite-like MOF nanocrystals incorporated 6FDA-polyimide mixed-matrix membranes for CO2/CH4 separation
AU - Liu, Gongping
AU - Labreche, Ying
AU - Chernikova, Valeriya
AU - Shekhah, Osama
AU - Zhang, Chen
AU - Belmabkhout, Youssef
AU - Eddaoudi, Mohamed
AU - Koros, William J.
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2018/11/1
Y1 - 2018/11/1
N2 - MOF mixed-matrix membranes (MMMs) are regarded as promising candidates for energy-efficient natural gas purification. This work reports the fabrication of high-performance 6FDA-polyimide MMMs, based on the incorporation of zeolite-like MOF (ZMOF) as fillers, and their associated permeation studies for CO2/CH4 separation. To eliminate micron-sized crystals, a facile repeating sedimentation approach was used to harvest nanocrystals from the as-synthesized bulk ZMOF crystalline powder material. This enables the deployment of ZMOF nanocrystals with relatively uniform dimension and morphology in the polymer matrix. Typical 6FDA-polyimides encompassing distinct diamine moieties (6FDA-DAM, 6FDA-DETDA-DABA or PDMC) were explored as polymer matrices to disclose the transport property matching the hosted ZMOF filler. Mixed-gas permeation measurements revealed that the incorporation of the ZMOF filler affords a concurrent enhancement of the CO2 permeability and the CO2/CH4 selectivity for the three tested 6FDA-polyimides. Particularly, the highly permeable 6FDA-DAM showed a considerably enhanced performance for CO2/CH4 that transcends the 2008 Robeson upper-bound. Detailed analysis of the sorption data and diffusion coefficients suggest that the enhanced transport property in the ZMOF-based MMM is plausibly attributed to the combination of the higher CO2 sorption capacity and selectivity, and favorable gas diffusivity via the CO2-philic framework of ZMOF in moderately confined pores.
AB - MOF mixed-matrix membranes (MMMs) are regarded as promising candidates for energy-efficient natural gas purification. This work reports the fabrication of high-performance 6FDA-polyimide MMMs, based on the incorporation of zeolite-like MOF (ZMOF) as fillers, and their associated permeation studies for CO2/CH4 separation. To eliminate micron-sized crystals, a facile repeating sedimentation approach was used to harvest nanocrystals from the as-synthesized bulk ZMOF crystalline powder material. This enables the deployment of ZMOF nanocrystals with relatively uniform dimension and morphology in the polymer matrix. Typical 6FDA-polyimides encompassing distinct diamine moieties (6FDA-DAM, 6FDA-DETDA-DABA or PDMC) were explored as polymer matrices to disclose the transport property matching the hosted ZMOF filler. Mixed-gas permeation measurements revealed that the incorporation of the ZMOF filler affords a concurrent enhancement of the CO2 permeability and the CO2/CH4 selectivity for the three tested 6FDA-polyimides. Particularly, the highly permeable 6FDA-DAM showed a considerably enhanced performance for CO2/CH4 that transcends the 2008 Robeson upper-bound. Detailed analysis of the sorption data and diffusion coefficients suggest that the enhanced transport property in the ZMOF-based MMM is plausibly attributed to the combination of the higher CO2 sorption capacity and selectivity, and favorable gas diffusivity via the CO2-philic framework of ZMOF in moderately confined pores.
KW - CO/CH separation
KW - Mixed matrix membranes
KW - Polyimide
KW - Zeolite-like MOF
UR - http://www.scopus.com/inward/record.url?scp=85052191749&partnerID=8YFLogxK
U2 - 10.1016/j.memsci.2018.08.031
DO - 10.1016/j.memsci.2018.08.031
M3 - Article
AN - SCOPUS:85052191749
SN - 0376-7388
VL - 565
SP - 186
EP - 193
JO - Journal of Membrane Science
JF - Journal of Membrane Science
ER -