Abstract
Electrochemical nitrogen reduction reaction (NRR) offers a sustainable solution towards ammonia production but suffers poor reaction performance due to preferential catalyst-H formation and the consequential hydrogen evolution reaction (HER). Herein, we electronically modify PtAu electrocatalyst d-band structure using zeolitic-imidazole framework (ZIF) to achieve a faradaic efficiency (FE) of >44% with high ammonia yield rate of >161 µg.mg cat -1 .h -1 at ambient conditions. Our strategy lowers electrocatalyst d-band position to weaken H adsorption and concurrently creates electron deficient sites to kinetically drive NRR by promoting catalyst-N 2 interaction. The ZIF coating on electrocatalyst doubles as a hydrophobic layer to suppress HER, further improves FE by >44-fold compared to without ZIF (~1%). Experimental and in-silico studies reveal PtAu-N ZIF interaction is key to enable strong N 2 adsorption over H atom. Our electrocatalytic design is universal and can be extended across metal electrocatalysts for diverse applications in NRR and air-to-fuel conversion.
Original language | English (US) |
---|---|
Journal | Angewandte Chemie (International ed. in English) |
DOIs | |
State | Published - May 29 2020 |