In this work the development of a Self-Powered System-On-Chip is explored by examining two components of process development in different perspectives. On one side, an energy component is approached from a biochemical standpoint where a Microbial Fuel Cell (MFC) is built with standard microfabrication techniques, displaying a novel electrode based on Carbon Nanotubes (CNTs). The fabrication process involves the formation of a micrometric chamber that hosts an enhanced CNT-based anode. Preliminary results are promising, showing a high current density (113.6mA/m2) compared with other similar cells.
Nevertheless many improvements can be done to the main design and further characterization of the anode will give a more complete understanding and bring the device closer to a practical implementation.
On a second point of view, nano-patterning through silicon nitride spacer width control is developed, aimed at producing alternative sub-100nm device fabrication with the potential of further scaling thanks to nanowire based structures. These nanostructures are formed from a nano-pattern template, by using a bottom-up fabrication scheme. Uniformity and scalability of the process are demonstrated and its potential described. An estimated area of 0.120μm2 for a 6T-SRAM (Static Random Access Memory) bitcell (6 devices) can be achieved.
In summary, by using a novel sustainable energy component and scalable nano-patterning for logic and computing module, this work has successfully collected the essential base knowledge and joined two different elements that synergistically will contribute for the future implementation of a Self-Powered System-on-Chip.
Date of Award | Nov 2010 |
---|
Original language | English (US) |
---|
Awarding Institution | - Computer, Electrical and Mathematical Sciences and Engineering
|
---|
Supervisor | Muhammad Mustafa Hussain (Supervisor) |
---|
- Self-Powered System-On-Chip
- Novel sustainable energy component
- Scalable nano-patterning