Caenorhabditis Elegans genome maintains active H3K36me3 chromatin domains interspersed with repressive H3K27me3 domains on the autosomes’ distal ends. The mechanisms stabilizing these domains and the prevention of position-effect variegation remains unknown as no insulator elements have been identified in C. elegans. De-novo motif discovery applied on mes-4 binding sites links the H3K36me3-specific methyltransferase to a class of non-coding DNA known as Periodic An/Tn Clusters (PATCs). PATCs display characteristics of insulator elements such as local nucleosome depletion and their restriction to genes with specific expression profiles and chromatin marks. Finally, I describe a set of experiments to further investigate the role of PATCs and mes-4 in the maintenance of stable chromatin domains using a synthetic biology approach.
Date of Award | Nov 2020 |
---|
Original language | English (US) |
---|
Awarding Institution | - Biological, Environmental Sciences and Engineering
|
---|
Supervisor | Christian Froekjaer Jensen (Supervisor) |
---|
- Gene Regulation
- Insulator elements
- Bioinformatics