• Marcelo Benitez

Student thesis: Doctoral Thesis


The energy demand has increased dramatically in the last century, and so to have global CO2 emissions. Two critical challenges for the geo-energy sector are to develop different approaches for harvesting energy and to actively decrease atmospheric CO2 emissions. Addressing these challenges requires efficient, sustainable, and affordable technical solutions. Complex fluids are ubiquitous and offer great potential for geo-engineering applications such as the development of geo-energy, enhanced oil recovery and CO2 geological sequestration and utilization. This thesis will present new results on interfacial phenomena in CO2-fluid-mineral systems, including interfacial tension hysteresis, the effects of surface-active components on interfacial tension (surfactants, nanoparticles, organo-bentonites and asphaltenes), and the interfacial pinning of immiscible fluids on substrates. Pore-scale phenomena come together in the study of the physical properties of CO2 and its implication for both storage and assisted gravity oil drainage. Finally, we provide a better understanding of the interfacial phenomena of complex fluids and their interactions within porous media that can lead to efficient and sustainable geo-energy systems.
Date of AwardAug 29 2023
Original languageEnglish (US)
Awarding Institution
  • Physical Sciences and Engineering
SupervisorHussein Hoteit (Supervisor)


  • Interfacial phenomena
  • Interfacial tension
  • Contact angle
  • Hysteresis
  • Complex fluis
  • CO2
  • CO2-assisted gravity drainage

Cite this