Viral diseases constitute a major threat to the agricultural production and food security throughout the world. Plants cope with the invading viruses by triggering immune responses and small RNA interference (RNAi) systems. In prokaryotes, CRISPR/Cas systems function as an adaptive immune system to provide bacteria with resistance against invading phages and conjugative plasmids. Interestingly, CRISPR/Cas9 system was shown to interfere with eukaryotic DNA viruses and confer resistance against plant DNA viruses. The majority of the plant viruses have RNA genomes. The aim of this study is to test the ability of the newly discovered CRISPR/Cas13a immune system, that targets and cleaves single stranded RNA (ssRNA) in prokaryotes, to provide resistance against RNA viruses in plants. Here, I employ the CRISPR/Cas13a system for molecular interference against Turnip Mosaic Virus (TuMV), a plant RNA virus. The results of this study established the CRISPR/Cas13a as a molecular interference machinery against RNA viruses in plants. Specifically, my data show that the CRISPR/Cas13a machinery is able to interfere with and degrade the TuMV (TuMV-GFP) RNA genome. In conclusion, these data indicate that the CRISPR/Cas13 systems can be employed for engineering interference and durable resistance against RNA viruses in diverse plant species.
Date of Award | May 2018 |
---|
Original language | English (US) |
---|
Awarding Institution | - Biological, Environmental Sciences and Engineering
|
---|
Supervisor | Magdy Mahfouz (Supervisor) |
---|
- CRISPR
- Cas13
- Plant Immunity