Water reuse is increasingly pursued to alleviate global water scarcity. However,
wastewater treatment process does not achieve full removal of biological contaminants
from wastewater, and hence some microorganisms and their genetic elements can be
disseminated into the reclaimed water distribution systems (RWDS). A systematic
identification and characterization of these biological contaminants is required.
However, a broad characterization for large-scale data are limited. In this study,
reclaimed water samples are investigated through metagenomic analyses to assess their
bacterial and functional (metal resistance genes (MRGs); virulence factors (VFs))
communities at the entry and exit points of the RWDS. Furthermore, water quality data
are investigated to evaluate the potential relationship with these metagenomic
annotations. This study found that the organic carbon content was likely relevant to the
increase of bacteria and functional genes in RWDS. It was also found that the variation
of functional genes was not associated with their host, inferring the role of horizontal
gene transfers or promiscuity of hosts for various functional genes. Furthermore,
Pseudomonas was identified in one RWDS with significant increase at both bacterial and
functional levels.
Date of Award | Nov 2019 |
---|
Original language | English (US) |
---|
Awarding Institution | - Biological, Environmental Sciences and Engineering
|
---|
Supervisor | Peiying Hong (Supervisor) |
---|
- Metagenomics
- Reclaimed Water
- Bacterial Community
- Functional Genes