Nano-Reinforcement of Interfaces in Prepreg-Based Composites Using a Carbon Nanotubes Spraying Method

  • Khaled Almuhammadi

Student thesis: Master's Thesis

Abstract

Multi-scale reinforcement of composite materials is a topic a great interest owing to the several advantages provided, e.g. increased stiffness, improved aging resistance, and fracture toughness. It is well known, that the fracture toughness of epoxy resins used as matrix materials for CFRP composites can be increased by the addition of nano-sized fillers such as Carbon nanotubes (CNTs). CNTs are particularly well suited for this purpose because of their nano-scale diameter and high aspect ratio which allow enhancing the contact area and adhesion to the epoxy matrix. On the other hand, CNTs can also be used to improve the interlaminar strength of composite, which is the resistance offered to delamination. Several fabrication techniques have been devised to this purpose, such as powder dispersion [51-53], spraying [54], roll coating [2] and electrospinning [55, 56]. The aim of this work is to extend the knowledge in this field. In particular, MWCNTs were dispersed throughout the interface of a carbon fiber composite laminate ([0o]16) through spraying and the resulting fracture toughness was investigated in detail. To this purpose, Double Cantilever Beam (DCB) specimens were fabricated by placing 0.5 wt.% CNTs at the interface of mid-plane plies and the fracture toughness was determined using the ASTM standard procedures. For comparison, baseline samples were prepared using neat prepregs. In order to corroborate the variation of fracture toughness to the modifications of interfacial damage mechanisms, Scanning Electron Microscopy (SEM) of the failed surfaces was also undertaken. The results of this work have shown that functionalized MWCNTs can enhance the interlaminar fracture toughness; indeed, compared to the neat case, an average increase around 17% was observed. The SEM analysis revealed that the improved fracture toughness was related to the ability of the Nano-reinforcement to spread the damage through crack bridging, i.e. CNTs pull-out and peeling.
Date of AwardNov 2012
Original languageEnglish (US)
Awarding Institution
  • Physical Sciences and Engineering
SupervisorGilles Lubineau (Supervisor)

Keywords

  • CFRP Composites
  • Carbon Nanotubes
  • Interface Reinforcements
  • Double Contilever Beam
  • SEM Analysis

Cite this

'