In this thesis, we discuss some of the results that were proven by Fabes and Stroock in 1984. Our main purpose is to give a self-contained presentation of the proof of this results. The first result is on the existence of a “reverse H ̈older inequality” for the Green’s function. We utilize the work of Muckenhoupt on the reverse Ho ̈lder inequality and its connection to the A∞ class to establish a comparability property for the Green’s functions. Additionally, we discuss some of the underlying preliminaries. In that, we prove the Alexandrov-Bakelman-Pucci estimate, give a treatment to the Ap and A∞ classes of Muckenhoupt, and establish two intrinsic lemmas on the behavior of Green’s function.
Date of Award | May 30 2019 |
---|
Original language | English (US) |
---|
Awarding Institution | - Computer, Electrical and Mathematical Sciences and Engineering
|
---|
Supervisor | Diogo Gomes (Supervisor) |
---|
- Green's Functions
- non-divergence form
- Fabes-Stroock
- ABP Estimate
- Muckenhoupt Weights